Karle, I. L., Flippen-Anderson, J. L., Uma, K. \& Balaram, P. (1990e). Curr. Sci. 59, 875-885.

Karle, I. L., Flippen-Anderson, J. L., Uma, K. \& Balaram, P. (1992). In preparation.

Karle, I. L., Flippen-Anderson, J. L., Uma, K., Balaram, H. \& Balaram, P. (1989). Proc. Natl Acad. Sci. USA, 86, 765-769.
Karle, I. L., Flippen-Anderson, J. L., Uma, K., Sukumar, M. \& Balaram, P. (1990). J. Am. Chem. Soc. 112, 9350-9356.

Karle, 1. L., Flippen-Anderson, J. L., Uma, K., Sukumar, M. \& Balaram, P. (1992). In preparation.

Karle, I. L., Karle, J., Mastropaolo, D., Camerman, A. \& Camerman, N. (1983). Acta Cryst. B39, 625-637.
Karle, I. L., Karle, J., Wieland, T., Burgermeister, W., Faulstich, H. \& Witkop, B. (1973). Proc. Natl Acad. Sci. USA, 70, 1836-1840.
Karle, 1. L., Sukumar, M. \& Balaram, P. (1986). Proc. Nail Acad. Sci. USA, 83, 9284-9288.
Karle, I. L., Wieland, T., Schermer, D. \& Ottenheym, H. C. J. (1979). Proc. Nall Acad. Sci. USA, 76, 1532-1536.

Kostansek, E. C., Lipscomb, W. N., Yocum, R. R. \& Thiessen, W. E. (1978). Biochemistry, 17, 3790-3795.
Landschulz, W. H., Johnson, P. F. \& McKnight, S. L. (1988). Science, 240, 1759-1764.

Langs, D. A. (1988). Science, 241, 188-191.
Marshall, G. R. \& Bosshard, H. E. (1972). Circ. Res. 30/31, Suppl. II, 143-150.
Mathew, M. K. \& Balaram, P. (1983a). Mol. Cell. Biochem. 50, 47-64.
Mathew, M. K. \& Balaram, P. (1983b). FEBS Lett. 157, 1-5.
Menestrina, G., Voges, K.-P., Jung, G. \& Boheim, G. (1986). J. Membr. Biol. 93, 111-132.

Mueller, P. \& Rudin, D. O. (1968). Nature (London), 217, 713-719.
Nagaraj, R. \& Balaram, P. (1981). Acc. Chem. Res. 14, 356-362.
Neupert-Laves, K. \& Dobler, M. (1975). Helv. Chim. Acta, 58, 432-442.
Okuyama, K., Tanaka, N., Doi, M. \& Narita, M. (1988). Bull. Chem. Soc. Jpn, 61, 3115-3120.
O`Shea, E. K., Klemm, J. D., Kim, P. S. \& Alber, T. (1991). Science, 254, 539-544.
Parthasarathy, R., Chaturvedi, S. \& Go, K. (1990). Proc. Natl Acad. Sci. USA, 87, 871-875.
Petcher, T. J., Weber, H. P. \& Ruegger, A. (1976). Helv. Chim. Acta, 59, 1480-1489.

Pinkerton, M., Steinrauf, L. K. \& Dawkins, P. (1969). Biophys. Res. Commun. 35, 512-518.
Prasad, B. V. V. \& Balaram, P. (1984). CRC Crit. Rev. Biochem. 16, 307-348.
Ramasubbu, N. \& Parthasarathy, R. (1989). Biopolymers, 31, 397-407.
Richaridson, J. S. (1981). Adv. Protein Struct. 34, 167-339.
Rinemart, K. L. Jr, Pandey, R. C., Moore, M. L., Tarbox, S. R., Snelling, C. R., Cook, J. C. Jr \& Milberg, R. H. (1979). In Peptides. Proc. 6 th American Peptide Symposium, edited by E. Gross \& J. Meienhofer, pp. 59-71. Rockford, IL: Pierce Chemical Co.
Saenger, W. (1980). Angew. Chem. Int. Ed. Engl. 11, 344-362.
Satyshur, K. A., Rao, S. T., Pyzalska, D., Drendel, W., Greaser, M. \& Sundaralingam, M. (1988). J. Biol. Chem. 263, 1628-1647.
Schneider, H.-J., Blatter, T. \& Zimmerman, P. (1990). Angew. Chem. Int. Ed. Engl. 29, 1161-1162.
Smith, G. D., Duax, W. L., Langs, D. A., De Titta, G. T., Edmonds, J. W., Rohrer, D. C. \& Weeks, C. M. (1975). J. Am. Chem. Soc. 97, 7242-7247.

Smithrud, D. B. \& Diederich, F. (1990). J. Am. Chem. Soc. 112, 339-343.
Stankovic, C. J., Heinemann, S. H. \& Schreiber, S. L. (1990). J. Am. Chem. Soc. 112, 3702-3704.

Sugeta, H. \& Miyazawa, T. (1967). Biopolymers, 5, 673-678.
Sundaralingam, M. \& Sekharuidu, Y. C. (1989). Science, 244, 1333-1337.
Terwilliger, T. C. \& Eisenberg, D. (1982). J. Biol. Chem. 257, 6016-6022.
Toniolo, C., Bonora, G. M., Bavoso, A., Benedetti, E., di Blasio, B., Pavone, V. \& Pedone, C. (1983). Biopolymers, 22, 205-215.
Vinson, C. R., Sigler, P. B. \& McKnight, S. L. (1989). Science, 246, 911-916.
Wallace, B. A. \& Ravikumar, K. (1988). Science, 241, 182187.

Wood, S. P., Tickle, I. J., Treharne, A. M., Pitts, J. E., Mascarenhas, Y., Li, J. Y., Husain, J., Cooper, S., Blundell, T. L., Hruby, V. J., Baku, A., Fischman, A. J. \& Wyssbrod, H. R. (1986). Science, 232, 633-636.
Yang, D. S. C., Sax, M., Chakrabartty, A. \& Hew, C. L. (1988). Nature (London), 333, 232-237.

Zalkin, A., Forrester, J. D. \& Templeton, D. H. (1966). J. Am. Chem. Soc. 88, 1810-1814.

The Perils of Cc: Comparing the Frequencies of Falsely Assigned Space Groups with their General Population

By Werner H. Baur and Dethard Kassner
Institut für Kristallographie und Mineralogie, Johann Wolfgang Goethe-Universität, Senckenberganlage 30, W-6000 Frankfurt am Main, Germany

(Received 11 July 1991; accepted 10 December 1991)

0108-7681/92/040356-14\$06.00
(TS) shows that higher symmetry is often overlooked in only a few space-group types. An incorrect lattice (false crystal class) is found most often for rhombohedral space-group types, and there especi-
(c) 1992 International Union of Crystallography
ally for $R \overline{3} m$ (TS) and $R \overline{3} c(\mathrm{TS})$, and for space group Fdd 2 (TS). An inversion center is most often missed in space groups $C 2 / c$ (TS) and Pnma (TS). The group which has the highest probability of being falsely assigned in a crystal structure determination is space group $C c$ (FS), both in absolute numbers and relative to its frequency among determined crystal structures. Possibly over 10% of all crystal structures reported in Cc (FS) should actually be described in a higher true symmetry ($C 2 / c, F d d 2$ or $R \overline{3} c$). For comparative purposes statistics of the frequency of space groups among inorganic crystal structures are given and compared with the corresponding distribution among organic compounds. Each space group appears to be occupied by at least one example. Inorganic substances are heavily concentrated in space groups of the most symmetric crystal classes of trigonal, tetragonal, hexagonal and cubic symmetry. Inorganic crystal structures are, compared to the organic structures, much more evenly distributed over the crystal systems. Surprisingly inversion centers are not much more common among inorganic substances when compared with organic compounds.

Introduction

When we determine a crystal structure there are four points at which we judge the symmetry of a previously undetermined structure:
(a) Before the diffraction experiment we do this on the basis of our knowledge of the physical properties of the substance. The simplest check along these lines is the visual inspection of the specimen. In some cases the available evidence may be meagre.
(b) Inspection of the geometry of the reciprocal lattice allows assignment of a crystal system. This is the point at which a mistake made at the beginning has a reasonable chance of being perpetuated. This can happen most easily when a preliminary orientation matrix obtained on a single-crystal diffractometer is accepted and not rechecked.
(c) After the intensity data have been collected we inspect their symmetry in reciprocal space. If a mistake was made in (b) above, we might overlook the symmetry of the intensity distribution. Intensity information may be abundant in a standard singlecrystal investigation, especially if data were collected within the complete reflexion sphere, but are limited in the case of powder diffraction.
(d) After the crystal structure is determined and refined we have the possibility of studying the symmetry of the result in direct space. This means that we can check the lattice geometry and the distribution of atoms for inherent symmetries which previously might have been overlooked.

Because this last chance to check the symmetry is sometimes neglected, an appreciably large, but
essentially unknown number of crystal structure determinations are described in incorrect space groups. The most common occurrence seems to be the assignment of space groups of too low symmetry (Schomaker \& Marsh, 1979; Jones, 1984; Baur \& Tillmanns, 1986; Marsh, 1986a) and we restrict ourselves to treating these cases only. In some instances refinement in a false space group can lead to incorrect chemistry being described for the compound studied (e.g. Marsh, 1986b; Müller, Bernet \& Hoppe, 1991). Since the number of published spacegroup corrections is now sufficiently large to give meaningful statistics we have compiled the relevant data.

Reported space-group changes

We searched the literature for reported space-group changes from a lower false symmetry (FS) to true higher symmetries (TS) and identified 210 of them. The corresponding papers were published between 1964 and 1991 and more than half of them were authored by Marsh and coworkers. An additional 10 space-group changes are known in our laboratory, one was communicated to us by U. Müller, and these 11 remain unpublished so far. We thus count 221 separate entries whereby we disregard isostructural pairs or series: the count refers to distinctly different crystal structure types, see Table 1. The sample consists of crystal structures of organic molecules, organometallics, inorganic compounds and alloys. The nature of our literature search is such that it is difficult to be certain of having found all possible references. These 221 cases are only a fraction of the expected number if all incorrectly assigned space groups were corrected. This is based on the estimate made by Baur \& Tillmanns (1986), according to which about 3% of all published crystal structures may have been described in too low a symmetry. We cannot be certain that all the reported space-group revisions themselves are correct. Some of them are based on new refinements of the original diffraction data, some on new data and some on a comparison of the e.s.d.'s of the positional coordinates with the shifts in the coordinates necessary to attain higher symmetry. All reported space-group changes are given with their observed frequencies in Table 2. They are sorted into the three categories of error already employed by Baur \& Tillmanns (1986): (1) both Laue class and crystal system are wrong; (2) only the Laue class is wrong; (3) Laue class and crystal system are correct, but an inversion center is missing. Additionally another category covers cases in which (4) a centering was overlooked, or too large a cell chosen, sometimes because diffraction spots were not recognized as due to twinning problems.

Table 1. References to space-group corrections

Entries are in the sequence: count, original space group, FS, corrected space group, TS (all space groups entered as given in the literature, that is not necessarily in standard setting), number of category, original reference, reference for correction. References are given in the order: last name of author, but not more than nine characters, the last (or the ninth) character is a + if there are multiple authors, year of publication, abbreviation for the journal, volume number, page number. If several corrections were published, the last one is given, on the assumption that the previous ones are quoted there. Numbers $24^{*}, 52^{*}, 93^{*}, 97^{*}, 124^{*}$ and 138^{*} are not counted towards the total of 221 entries because they are isostructural with the entries preceding them.

	FS	TS	Category	Reference 1
1	$I_{\text {I }}$	I2/c	3	Garcia-B + (1968). $2 K, 127,145$
2	Pİ	[2/m	1	Bagleu-B + (1975). $A C, \mathrm{B31}, 2264$
3	$P_{P 1}{ }_{1}$	$A 2, m a$	1	Faure + (1981). CSC, 10, 515
4	$P \overline{1}$	$A 2 / a$	1	Gostoic + (1982). CSC, 11, 1215
5	P1	Cm	1	Cousson + (1983). AC. C39. 425
6	P1	Cc	1	Rzaigui + (1983). JSSC, 50, 240
7	Pl	Im	1	Palchik + (1984). DAN, 278, 108
8	C2:c	$R \underline{3} \cdot{ }^{\text {c }}$	1	Matsuno + (1984). BCSJ, 57, 593
9	$P 1$	$P \overline{1}$	3	Stefanid + (1982). $2 K, 159,255$
10	P1	$P \overline{1}$	3	Prince + (1984). AC, C40, 1499
11	Pba2	Pbam	3	Brisson + (1984). AC, C40, 1405
12	P1	C2/c	1	Stepfen + (1977). IC, 16, 1119
13	PI	C2/c	1	Bertrand (1977). IC, 16, 1484
14	$A a$	A2/a	3	Moore + (1977). IC, 16, 1839
15	P1	$P \overline{1}$	3	Cannas + (1977). IC, 16, 228
16	C2	C2im	3	Karipide + (1977). IC, 16, 3299
17	Pna2,	Pnma	3	Ciearfie + (1977). IC, 16, 628
18	P1	Pİ	3	Chia + (1977). IC, 16, 254
19	$P \overline{1}$	C2/c	1	TOUPET + (1984). AC, C40, 1490
20	$B b$	Fdd 2	1	Gridunov + (1983). SPC, 28, 166
21	Cc	Fdd 2	1	$\mathrm{Ho+}$ (1986). AC, C42, 1787
22	Cc	Fdd 2	1	Herbstel + (1986). AC, B42, 575
23	$B b$	C2/c	3	Voliotis + (1975). AC, B31, 2607
24*	Bb	C2/c	3	Voliotis + (1975). AC. B31, 2612
25	$P a$	$P 2{ }_{1}{ }^{\prime} \mathrm{a}$	3	Fljisawa + (1982). BCSJ, 55, 3424
26	$P \mathrm{c}$	$P 2,1 /$	3	Mercier + (1982) AC, B38. 1731
27	Cm	$\mathrm{C2} \mathrm{~m}$	3	LeFur + (1982). $A C, \mathrm{B38}, 1431$
28	Cc	C2ic	3	Nirmai.a + (1982). AC, B38, 839
29	Cc	C2/c	3	Rebrah + (1979). A C, B35, 2197
30	$\mathrm{CmC} 2{ }_{1}$	Cmcm	3	Jeprs + (1983). $A C, \mathrm{C} 39,1205$
31	14,	$14_{\perp} / a$	3	El-Toti + (1984). JACSS, 106, 4596
32	$P 1$	$P \mathrm{l}$	3	Sol.ans + (1982). CSC, 11, 1199
33	Pna2,	Pnam	3	Gerdil + (1974). HC A, 57, 489
34	Pna2,	Pram	3	ZANOTTI+ (1982). CSC, 11, 1329
35	$P 2{ }_{1}$	$P 2$ ic	3	Schneide + (1982). CSC, 11, 1233
36	Cc	C2/c	3	Boceili, (1982), CSC, 11, 2035
37	Pna ${ }_{1}$	Pnam	3	Aléonard + (1980). JSSC, 34, 79
38	P1	Cc	1	Mairesse + (1978). AC, B34, 1771
39	R3	$R \overline{3}$	3	Range + (1984). $2 N, 39$ b, 118
40	$P \underline{1}$	C2im	1	Willett + (1988), IC, 27, 614
41	$P \overline{1}$	C2/c	1	Ozarowsk + (1988). IC. 27, 628
42	CmC2 ${ }_{1}$	Cmcm	3	Darriet + (1978). AC, B34, 3528
43	Cmom	$\mathrm{P}_{\mathbf{6}} \mathrm{l}$ imcm	1	Marsh + (1983). AC, B39, 280
44	$P \underline{1}$	$P \overline{1}$	3	Emsley + (1981). JINC, 43, 2243
45	P_{1}^{1}	$P 2 / n$	1	Let + (1987). JSSC, 67, 364
46	$1 \overline{4}$	$1 \overline{4} 2 \mathrm{~m}$	2	Gastalde + (1987). JSSC. 66, 251
47	$P 3$	R32	1	Boeyens + (1985). IC. 24, 2926
48	$P 2_{1}$	$P 2, / m$	3	Bavoso + (1984). AC, C40, 2035
49	$P b c 2_{1}$	Pb cm	3	Pett + (1983). IC, 22, 3661
50	Pn	$P 2$ in	3	Yamaguch + (1984). AC, C40, 113
51	$P 1$	$P \underline{1}$	3	GAl.I + (1989). $A C, \mathrm{C} 45,1667$
52*	$P 1$	P1	3	Gall + (1989). AC. C45, 1667
53	Pna2,	Pnma	3	Castella + (1989). AC, C45, 1207
54	$P 1$	$P \overline{1}$	3	TOUPET + (1989). AC, C45, 1044
55	$\mathrm{C2} / \mathrm{m}$	$R \overline{3} m$	1	BHAN + (1969). JLCM, 19.121
56	C2m	$R \overline{3} m$	1	AxEL + (1965). ANC, 77, 379
57	C 2 m	$R \overline{3} m$	1	Bhan + (1969). JLCM ${ }^{\text {a }}$, 19, 121
58	C2:m	$R \overline{3} m$	1	Eisenman + (1985). $2 \mathrm{ZN}, \mathbf{4 0 b}, 1419$
59	C2/m	$R \overline{3} \mathrm{~m}$	1	Micheiet + (1976). JLCM. 45, 185
60	C2m	$R \overline{3} m$	1	Bhan + (1969). JLCM ${ }^{\text {a }}$ 19, 121
61	C2m	$R \overline{3} m$	1	ZaLKIN + (1956). JPC, 60, 1275
62	C2m	$R \overline{3} m$,	Welk + (1977). ZN, 32b, 749
63	C2/m	$R \overline{3} m$	1	Btlin (1981), AC, B37, 2060
64	C2ic	$R \overline{3} m$	I	Petrov + (1987). SPC, 32, 289
65	C2m	$R \overline{3} m$	1	Welk + (1977). ZN, 32b, 749
66	C2	R32	1	Klee + (1979). ZN, 34b, 657
67	C2/C	$R \overline{3} \mathrm{C}$	1	Bronger + (1982). JLCM, 83, 29

Reference 2
BaUR + (1970). ZK, 131, 213
BAUR + (1986). AC, B42, 95
BAUR + (1986). AC, B42, 95
BAUR + (1986). AC, B42, 95
BaUR + (1986). AC, B42, 95
BAUR + (1986). AC, B42, 95
BAUR + (1986). AC, B42, 95
BAUR + (1986). AC, B42, 95
Baur + (1986). $A C$, B42, 95
Baur + (1986). AC, B42, 95
BAUR + (1986). AC, B42, 95
Marsh $^{+}$(1979). IC, 18, 2331
Marsh + (1979). IC, 18, 2331
MarSH^{+}(1979). IC, 18, 2331
Marsh + (1979). $I C, 18,2331$
Marsh + (1988). $A C$, B44, 77
Marsh + (1988). $A C$, B44, 77
MaRSH + (1988). AC, B44, 77
MaRSH + (1988). AC, B44, 77
MarSh + (1988). AC, B44, 77
$\mathrm{M}_{\text {ARSH }}+(1988) . A C, \mathrm{~B} 44,77$
MaRSH^{+}(1988). $A C, \mathrm{~B} 44,77$
MarSH + (1988). AC, B44, 77
Marsh + (1988). AC, B44, 77
Marsh + (1988). AC, B44, 77
MaRSH^{+}(1988). $A C, \mathrm{~B} 44,77$
Marsh + (1988). AC, B44, 77
Marsh + (1988). $A C$, B44. 77
Marsh + (1988). AC, B44, 77
Marsh + (1988). AC, B44, 77
Marsh + (1988). AC, B44, 77
MaRSH^{+}(1988). $A C, \mathrm{~B} 44,77$
Marsh + (1988). $A C$, B44, 77
MaRSH + (1988). $A C$, B44, 77
Marsh (1980). AC, B36, 219
Jones + (1987). ZN. 42b, 1365
Marsh (1988). IC, 27, 2902
Marsh (1988). IC, 27, 2902
Marsh + (1983). AC, B39, 280
LePagie + (1984) A AC, C40, 1787 Gilmore + (1982). AC, B38, 2809 MarSh (1988). JSSC, 73, 577 Marsh + (1988). JSSC, 73, 591 Marsh (1987). AC, B43, 174 Marsh (1986). AC, B42, 193 Marsh (1986). AC, B42, 193 Marsh (1986). AC, B42, 193 Marsh (1990). AC, C46, 2497 Marsh (1990). AC, C46, 2497 Marsh (1990). AC, C46, 1761 Marsh (1990). $A C$, C46, 1356 Cenzual. + (1990). ZK, 193, 217 Schnerin + (1980). ZM, 71, 357 Cenzlal + (1990). ZK, 193, 217 Eisenman + (1989). ZN, 44b, 1228 Clauss + (1978). NJMM, 256 Cenzual (1990). ZK, C193, 217 Cenzual (1990). ZK, C193, 217 Cenzual (1990). ZK, C193, 217 MarSH^{+}(1983). AC, B39, 280 Cenzual (1990). ZK, C193, 217 Cenzlal (1990). ZK, C193, 217 Cenzlal (1990). ZK, C193, 217 Bronger + (1983).JLCM, 95, 275

Table 1 (cont.)

	FS	TS	Category	Reference 1
68	Cm	R3m	1	Collin + (1974). AC, B30, 1134
69	Pnc2	Pnca	3	Spek (1977). CSC, 6, 259
70	Cmmm	P4/mbm	1	Abba-Tou + (1990). JSSC, 84, 245
71	P1	$\mathrm{C} 2 / \mathrm{m}$	1	Акімото + (1989). JSSC, 83, 132
72	Cc.	C2/c.	3	Bino + (1979). IC, 18, 2599
73	14	$14 / m$	3	BAYON^{+}(1979). IC, 18, 3478
74	$P 2$,	Cmc 2 ,	1	Ginderow (1989). AC, C45, 185
75	Cc	C2/c	3	Cotton + (1980). AC, B36, 457
76	C2/c	$R \overline{3} \cdot$	1	Haller + (1983). AC, C39, 1559
77	Pn	$P 21 / n$	3	Noordik + (1982). CSC. 11, 1335
78	C2/c	Ibca	1	BenAmara + (1987). AC, C43, 616
79	Pnn2	Pnna	3	Fortier + (1985). AC. C41, 1763
80	Cc	(2/c	3	Luekens + (1984). IC, 23, 1718
81	Pn	$P 21 / n$	3	Burford + (1984). IC, 23, 1946
82	Cm	$P \overline{6} \mathrm{~m} 2$	1	Metin + (1984). JSSC, 55, 299
83	$P{ }_{2}{ }_{1}$	$P 2_{1} / n$	3	Satyanar + (1981). $Z K, 157,191$
84	$P 1$	C2/c	1	Rath + (1985). IC, 24, 3934
85	C2	P3,21	1	HämäLäln + (1978). ACS, A32, 549
86	$P 4$,	$P 4,2,2$	2	KVICK + (1980). $A C$, B36, 734
87	$P 6_{3} / m$	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	Endres + (1979). AC, B35, 2880
88	$\mathrm{Pb}_{3} / \mathrm{m}$	$\mathrm{PG}_{3} / \mathrm{mmc}$	2	Mullica + (1980). AC, B36, 2561
89	$P 1$	(2/c	1	Endires + (1980). AC, B36, 2230
90	C2/c	$R \overline{3} \cdot$	1	GALY + (1980). AC, B36, 392
91	C2/c	$R \overline{3} \mathrm{C}$	1	Bino + (1976). JACS, 98, 7093
92	C2/m	$R \overline{3} m$	1	$\mathrm{H}_{\text {aSSEL }}+$ (1958). ACS, 12, 1146
93*	C2/m	$R \overline{3} m$	1	Hassel + (1959). ACS, 13, 1781
94	$P \overline{1}$	$P 2, / n$	1	Bors + (1976). AC, B32, 1541
95	$P \overline{1}$	C2/c	1	vander $\mathrm{V}_{\mathrm{E}}+$ (1984). $/$ IC, 23, 146
96	$P \underline{1}$	C2/c	1	Chiadmi + (1985). AC, C41, 811
97*	$P \overline{1}$	C2/c	1	Brodalla + (1980). $2 N, 35$ b. 403
98	Pna2,	Pnam	3	Wel + (1988). AC, C44, 77
99	$P 2$,	$P_{2}{ }_{1} / m$	3	Cooursley + (1974). $A C, \mathrm{B30}, 864$
100	P3m1	$P \overline{3} m 1$	3	Beaulieu + (1982). MC, 113, 415
101	C2/c	$P \overline{3} \mathrm{Cl}$	1	Massa (1977). ZAAC, 436, 29
102	C222,	Ccmm	3	Vilminot + (1978). $A C$, B34, 3308
103	Pn2, a	Prma	3	Yanagisa + (1979). AC, B35, 137
104	C2	C2/c	3	Machida + (1982). AC, B38, 386
105	Cme2 ${ }_{1}$	Cmcm	3	Bafenzing + (1966). IC. 5, 1399
106	C2	$\mathrm{C} 2 / \mathrm{m}$	3	Kozarek + (1973). IC, 12, 2129
107	$P \overline{4} b 2$	P4/mbm	3	Pinto + (1980). JCSCC. 13
108	Cc	C2/c	3	Leadbett + (1980). MCLC, 61, 39
109	P1	Cc	1	Burow + (1979). ZAAC, 459, 59
110	$P 21 / m$	Cmcm	1	Jansen (1978). RCM, 15, 242
111	Pna2 ${ }_{1}$	Pnam	3	Ci.fgG + (1985), AC, C41, 530
112	Pna ${ }_{1}$	Pnam	3	Kihlborg + (1971). AC, B27, 2066
113	$P 3{ }_{2}$	$P 321$	2	Fischer + (1983), NJMM, 49
114	Cc	C2'c	3	Ozima (1986). AC, C42, 513
115	Cc	C2/c	3	Cordes + (1974). AC, B30, 1621
116	$P 4_{2} / n$	$\mathrm{P4}_{2} / \mathrm{nmc}$	2	Kuroda + (1983). $I C, 22,3620$
117	$P 1$	C2/c	1	Shimizu + (1983). AC, C39, 891
118	$P 2_{1}$	$P 2,2,2$,	1	Sugio + (1983). AC, C39, 745
119	C2	Fdd2	1	$\mathrm{J}_{\text {ABER }}+(1983) . A C, ~ \mathrm{C} 39,485$
120	$P \overline{1}$	Immm	1	Solans + (1983). $A C$, C39, 1510
121	Cc	C2/c	3	Dumora + (1971). MRB, 6, 561
122	Cc	C2/c	3	Holt + (1977). AC, B33, 95
123	$C \mathrm{c}$	C2/c	3	Guillevi + (1974). AC, B30, 111
124*	Cc	C2/c	3	Gullevi + (1974). AC, B30, 111
125	Cc	C2ic	3	Rodek + (1980). Z.AAC, 462, 42
126	Cc	C2/c	3	LEe + (1969), AC, B25, 2497
127	Cm	C2im	3	NODA + (1986). AC, B42, 529
128	$P \overline{4}$	$P \overline{4} 2, m$	2	BALL + (1985). $A C, \mathrm{C41}, 47$
129	$P \underline{1}$	C2/c	1	Allan + (1985). AC, C41, 58
130	$P \overline{1}$	C2/c	1	Olszax + (1987). AC, C43, 2169
131	P31c	$\mathrm{P}_{6} / \mathrm{mmc}$	1	Schlster + (1980). ZM, 71, 341
132	C2/c	$R \overline{3} \cdot{ }^{\text {c }}$	1	Averbuch + (1987). AC, C43, 1653
133	$P 1$	$P \overline{1}$	3	Fornasini (1987). AC, C43, 613
134	C2	Fdd2	1	Charpin + (1988). AC, C44, 1698
135	Pna2 ${ }_{1}$	Pnma	3	Hökelek + (1988). A C, C44, 832
136	$P \overline{1}$	C2/c	1	Sambena + (1988). AC, C44, 1047
137	$P 2_{1} / \mathrm{m}$	Cmcm	1	Mullica + (1989). AC, C45, 330
138**	$P 2{ }_{1} / \mathrm{m}$	Cmcm	1	Mullica + (1988). IC A, 142, 9
139	$P 1$	$P \overline{1}$	3	Kitajima + (1988). AC, C44, 1876
140	$P 1$	$P \overline{1}$		Bocelli + (1984). AC, C40, 679
141	$P 1$	$P \overline{1}$	3	Bocelli + (1984). A C, C40, 1391
142	Cc	C2/c	3	Ramani + (1975). FER. 9.49

Reference 2
Cenzual (1990). ZK. C193, 217
SPEK + (1990). AC, C46, 1357
Marsh (1990). JSSC. 87, 467
Marsh (1990). JSSC, 86, 135
Marsh + (1981). 1 C, 20, 299
Marsh + (1981). IC, 20, 299
Marsh (1989). AC, C45, 1840
Marsh (1981). AC, B37, 1985
Marsh (1984). AC, C40, 1632
Herkstel + (1984). AC, C40, 1633
Marsh (1987). AC, C43, 2470
Marsh (1986). AC, C42, 1327
Marsh^{+}(1985). IC, 24, 2114
Marsh + (1985). IC, 24, 2114
Marsh (1986). JSSC, 64, 119
Herbstel + (1985). $Z K, 173,249$
Schaffer (1986). IC. 25, 2665
Davies (1984). AC, C40, 903
Herbstel + (1982). AC, B38, 1051
Herbstel + (1982). AC, B38, 1051
He:rbstel + (1982). AC, B38. 1051
Herbstel + (1982). $A C$, B38, 1051
Herbstel + (1982). AC, B38, 1051
Herbstel + (1982). $A C$ C, B38, 1051
Herbstel + (1982). AC. B38, 1051
Herbstel + (1982). AC, B38, 1051
Schomake + (1979). AC, B35, 1094
Marsh (1984). IC, 23, 3682
Marst (1986). AC. C42. 511
Marsh (1986). AC, C42, 511
Wei + (1988). AC, C44, 1866
Balr + (1987). Unpublished.
BAUR + (1991). Unpublished.
Marsh + (1983). $A C$, B39, 280
MARSH + (1983). $A C$, B39, 280
Marsh + (1983). $A C$, B39, 280
Marsh + (1983). AC, B39, 280
Marsh + (1983). $A C$, B39, 280
MARSH + (1983). $A C$, B39, 280
$\mathrm{M}_{\text {ARSH }}+(1983) . A C$, B39, 280
MaRSH + (1983). $A C \cdot$ B39. 280
Jones (1984). CSR, 13, 157
Bodenste + (1983). ZN, 38b, 172
Clegg (1986). AC, C42, 1463
Kihliborg + (1972). AC, B28, 3097
Fischer + (1987). AC, C43, 1852
Ofima (1987). AC, C43, 173
Singh + (1978). AC, B34. 2956
Marsh (1984). IC, 23, 2363
Shimizu + (1984). AC, C40, 902
Sugiot (1984). $A C$, C40, 712
Marsh (1983). AC, C39, 1473
Marsh (1984), AC, C40, 1110
Wu^{+}(1973). MRB, 8, 593
BaUk + (1991). Unpublished.
BaUr + (1991). Unpublished.
BaUR + (1991). Unpublished.
Baur + (1991). Unpublished.
Einspahr + (1971). AC, B27, 846
Marsh (1987). AC, B43, 415
Marsh + (1985). $A C$, C41, 1383
Marsh + (1985). $A C$, C41, 1383
Marsh + (1988). AC, C44, 948
Parthé + (1988). 4C., C44, 774
Marsh (1988). AC. C44, 774
MARSH + (1988). AC, C44, 395
Marsif (1989). AC, C45, 980
Marsh (1989). AC. C45, 694
Marsh (1989). AC, C45, 347
Marsh + (1989). $A C$ C. C45, 1270
Marsh (1989). IC $A, 157,1$
Marsh (1989). AC, C45, 1269
Bocelilit (1986). AC. C.42, 127
Bocflli + (1986). AC, C42, 127
Mardumo + (1974). AC, B30, 1628

Table 1 (cont.)

	FS	TS	Category	Reference 1
143	$C \mathrm{c}$	C2/c	3	Matveeva + (1980). SPD, 25, 321
144	Cc	C2/c	3	Hanson (1962). AC, 15, 930
145	$C \mathrm{c}$	C2/c	3	Pascard (1955). CR, 240, 2162
146	$C \mathrm{c}$	C2/c	3	Dittrich + (1969). ZAAC, 371, 306
147	Cc	C2/c	3	Maksimov + (1974). SPD, 18, 681
148	$P 2_{1}$	$P_{2}{ }_{1} / m$	3	TzSCHaCh + (1985). $J C S R, 15,423$
149	$P 1$	$P \overline{1}$	3	Calestan + (1987). JCSR, 17, 251
150	$P \overline{1}$	$P 2_{1} / n$	1	Bois + (1976). AC, B32, 1541
151	$C c$	$F d d 2$	1	Sakae + (1978). AM, 63, 520
152	Cc	C2/c	3	Staffel + (1988). ZAAC, 563, 27
153	$1 \overline{4}$	14/m	3	Bino + (1979). IC, 18, 2599
154	Cc	R3c	1	Greiser + (1977). CB, 110, 3388
155	$P 2$,	$P 2,2,2$,	1	Bernal + (1988). ICA, 142, 235
156	Pna2,	Pnam	3	ZhongShe + (1988). ICA, 142, 333
157	$P 1$	R3m	1	Araujo-M + (1988). IC A, 146, 123
158	$C c$	C2/c	3	Leukens + (1984). $/ C, 23,1718$
159	$P \underline{n}$	$P 2_{1} / n$	3	Burford + (1984). $/ C, 23,1946$
160	$P 1$	C2/c	1	COTTON + (1984). IC, 23, 4033
161	$C c$	Fdd 2	1	Arif + (1987). OM, 6, 506
162	C2	C2/c	3	PiCARD + (1987). JSSC, 69, 380
163	I2/a	Fddd	1	Searle + (1989). ICA, 156, 57
164	R3	$R \overline{3}$	3	Ouvrard + (1988). JSSC. 73, 27
165	$P b 2 n$	Phcn	3	Leblanc + (1983). JSSC, 47, 24
166	Pc	Pmcm	1	Aléonard + (1982). JSSC, 42, 80
167	C222,	Ccmm	3	Rogers + (1979). JCMS, 9, 45
168	$P 1$	$P 1$	3	Brisse + (1983). OM, 2, 878
169	C2/c	R3c	1	Alder + (1983). JCSCC, 999
170	C2/c	$P \overline{3} 1 c$	1	ALDER + (1983). JCSCC, 1000
171	Cc	C2/c	3	NaIR^{+}(1989). IC, 28, 1582
172	Cc	C2/c	3	Reger + (1989). IC, 28, 3092
173	Cc	C2/c	3	Dahlstro + (1982). IC, 21, 933
174	$P 2_{1}$	Cmc2,	1	Bandoli + (1988). JCSR, 18, 679
175	$P a$	P2/a	3	Suzuki + (1988). OM, 7, 2243
176	$P \underline{2}_{2} m \mathrm{c}$	$P 4_{2} / n m c$	3	Okuda + (1990). AC, C46, 1755
177	$P 1$	C2/c	1	$\mathrm{Xu}+$ (1990). $A C, \mathrm{C46}, 1447$
178	$14 / \mathrm{m}$	$14 / \mathrm{mcm}$	2	AbbaTour + (1990). JSSC. 87, 229
179	P2/c	C2/c	4	Wandner + (1986). RCM ${ }^{\text {a }}$, 23, 520
180	$P 2 / 1 n$	(2/c	4	Wandner + (1988). 2 AAC, 557, 153
181	$P 2$,	$P 2_{1} / \mathrm{c}$	3	Stoll + (1988). Z AAC, 564, 45
182	$P 2_{1} / a$	C2/c	4	Kirfel + (1979). $2 K, 149,315$
183	Pna2 ${ }_{1}$	Pnam	3	HOPPE + (1987). ZAAC, 551, 123
184	Iba2	Ibam	3	Bfidnowit + (1966). $A C, 20,100$
185	Pmna	Cmmm	4	Avilov + (1972). SPC, 17, 237
186	14 mm	$14 / \mathrm{mm}$	3	IWASAKI (1965). JPSJ, 20, 89
187	$1 \overline{4} 3 \mathrm{~m}$	$\mathrm{Pm} \overline{3} \mathrm{~m}$	4	Puselj + (1978). CCA, 51, 75
188	Prma	Cmcm	4	Bruzzone + (1970). JLCM, 22. 253
189	Bba 2	Comca	3	Schlbert + (1950). ZM, 41, 433
190	P3	$\mathrm{Pb}_{\mathbf{6}} / m$	2	Günzel + (1958). ZM, 49, 124
191	P6	P6m2	2	Schubert + (1955). $Z M, 46,216$
192	$P 2 / m$	C2/m	4	Watanabe (1982). JSSC, 43, 226
193	$P 42 c$	$P 4_{2} / \mathrm{mmc}$	3	Bal'fR + (1980). AC, C36, 1540
194	$P 4,2,2$	$\mathrm{P4}_{2} / \mathrm{mmm}$	3	Yamane + (1987). JSSC, 71, 1
195	P222	Pccm	3	JUZA + (1968). ZAAC, 356, 253
196	P321	$P \overline{3} \mathrm{ml}$	3	Zalkin + (1956). JPC, 60, 234
197	P2/m	$P 2 / m$	4	Loebich + (1979). JLCM, 63, 83
198	P6	P6m2	2	Larson + (1965). AC, 18, 906
199	Cm 2 m	Cmcm	3	Burkhardt + (1965). $2 M, 56,864$
200	R3	$R \overline{3} m$	2	Schubert + (1963). ZM, 54, 422
201	C222	Cmmm	3	Bfcher + (1966). ZAAC, 344. 140
202	Pmmin	Cmem	4	Nowotny + (1951). MC, 82, 513
203	P222,	Pmma	3	Andresen + (1972). ACS, 26, 175
204	P222,	Pmma	3	GÖbel + (1976). PSS, A34, 553
205	1422	14 immm	3	HOPPE + (1964). ZAAC, 329. 110
206	$P 1$	C2/c	1	Kanishch + (1979). JSC, 20, 122
207	R3	R3m	2	Rouxel + (1971). BSCF, 3930
208	Pnnn	Cccm	4	Somenkov + (1968), SPSS, 10, 1076
209	$P 2_{1} / m$	$P 2,1 m$	4	Giessen + (1964). AC, 17, 615
210	P2/m	P2/m	4	Giessen + (1964), AC, 17, 615
211	$P \underline{96}_{3} / m$	$\mathrm{P6}_{2} / m m \mathrm{c}$	2	TOMAN + (1952). AC, 5, 329
212	$F 43 m$	Fd3m	3	Kharkin + (1970). SPC, 14, 779
213	$A b a 2$	Cccu	3	Schurert + (1950). ZM, 41, 298
214	$P 4 b 2$	P4/nbm	3	Boller (1978). MC, 109, 975
215	P622	P6/mmm	3	Boleer + (1976). JLCM, 45, 103
216	P31c	$\mathrm{P6}_{3} \mathrm{mc}$ c	2	Schester + (1984). JSSC, 53, 260
217	$A m a 2$	Cmcm	3	Hatt + (1959). AC, 12, 655

Reference 2
BALR + (1991). Unpublished. Botse + (1990). ZK, 193, 289
Yu + (1978). JCMS, 8, 193
Hodeau + (1982). JSSC, 45, 170
Metcalf - + (1976). AC, B32. 2553
Marsh (1986). JCSR, 16, 797
Marsh (1988). JCSR, 18, 219
Schomake + (1979). AC, B35, 1094
BAUR + (1991). Unpublished.
Marsh + (1990). ZAAC, 582, 128
MARSH + (1981). IC, 20, 299
Davies + (1982). $A C$, B38, 2251
Marsh (1989). ICA, 157, 1
Marsh (1989). ICA, 157, 1
Marsh (1989). ICA, 161, 1
Marsh + (1985). IC. 24, 2114
Marsh + (1985). IC, 24, 2114
MARSH + (1985). IC, 24, 3487
Marsh + (1987). OM, 6. 1996
BAUR + (1991). Unpublished.
MARSH (1989). ICA, 166, 1
Marsh (1988). JSSC. 77, 190
Marsh (1984). JSSC. 51, 405
Marsh (1983). JSSC: 47, 242
Marsh (1980), JCMS, 10, 163
MARSH + (1984). OM, 3, 1118
Schaffer + (1984). JCSCC, 1555
Schaffer + (1984). JCSCC, 1555
Marsh (1990). IC, 29, 572
Marsh (1990). IC, 29, 1449
MARSH + (1983). IC. 22, 1691
Marsh (1990). JCSR, 20, 197
Marsh (1989). OM, 8, 1583
Marsh (1991). $A C$, C 47,1775
Marsh (1991). AC, C47, 1774
Marsh (1991). JSSC. 92. 594
M ̈̈ller + (1990). ZAAC, 583, 205
Müllefr + (1990). ZAAC, V583, P153
Müller + (1991). ZAAC. In the press.
Kirfel + (1984). ZK, 167, 287
Mëleer, U. (1991). Personal communication.
Mëller. (1978). AC, B34, 1044
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). AC, B47, 433
Cenzlal + (1991). AC: B47, 433
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). AC; B47, 433
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). $A C$, B47, 433
Cenzual + (1991). AC. B47, 433
Cenzual + (1991). $A C$, B47, 433
Cenzual + (1991). AC, b47, 433
Cenzlal + (1991). AC, b47, 433
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). AC, b47, 433
Cenzual+ (1991). AC, B47, 433
Cenzlal + (1991). AC. B47, 433
Cenzual + (1991). AC', B47, 433
Cenzlal. + (1991). AC, B47, 433
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). AC, b47, 433
Cenzual + (1991). AC, B47, 433 Cenzlai.+ (1991). AC, B47, 433 Cenzual + (1991). AC, B47. 433 Cenzual + (1991). AC, b47, 433 Cenzual + (1991). AC. B47. 433 Cenzual + (1991). AC: B47, 433 Cenzual + (1991). AC, b47, 433 Cenzual + (1991). AC, B47, 433 Cenzual + (1991). AC, B47, 433 Cenfual. + (1991). AC. B47. 433 Cenzlail + (1991). AC, B47, 433 CENTUAL + (1991), AC, B47, 433 Cenaual + (1991). AC, B47, 433

Table 1 (cont.)

	FS	TS	Category
218	$A m m 2$	$C m c m$	3
219	$P 3_{1}$	$P 3_{1} 12$	2
220	$P 6_{2} 2$	$P 6_{3} / m m c$	3
221	$P c c 2$	$P c c m$	3
222	$P 6_{2}$	$P 6_{2} 22$	2
223	$P 2_{1}$	$P 2_{1} / m$	3
224	$P 6$	$P 6 / m m m$	2
225	$P 31 c$	$P 6_{i} m m c$	2
226	$C c$	$F d d 2$	1
227	$C \overline{1}$	$C 2 i c$	1

Reference 2
Cenzual + (1991). AC, B47, 433
Cenzual + (1991). $A C$, B47, 433
Cenzual + (1991). AC, B47, 433
Cenzlal + (1991). AC, B47. 433
Baur + (1991). Unpublished.
BAUR + (1991). Unpublished.

Journal abbreviations: AC Acta Cryst., ACS Acta Chem. Scand., AM Am. Mineral., ANC Angew. Chem., BCSJ Bull. Chem. Soc. Jpn, CCA Croat. Chem. Acta, CB Chem. Ber., CR C. R. Acad. Sci. (Paris), CSC Cryst. Struct. Commun., CSR Chem. Soc. Rev., DAN Dokl. Akad. Nauk SSSR, FER Ferroelectrics. HCA Helv. Chim. Acta, IC Inorg. Chem., ICA Inorg. Chim. Acta, JACS J. Am. Chem. Soc., JCMS J. Cryst. Mol. Struct., JCSCC J. Chem. Soc. Chem. Commun., JCSR J. Crystallogr. Spectrosc. Res., JINC J. Inorg. Nucl. Chem., JLCM J. Less-Common Met., JPC J. Phys. Chem., JPSJ J. Phys. Soc. Jpn. JSC J. Struct. Chem., JSSC J. Solid State Chem., MC Monatsh. Chem., M CLC Mol. Cryst. Liq. Cryst., MJ Mineral. J., M RB Mater. Res. Bull., NJMM Neues Jahrb. Mineral. Monatsh., OM Organometallics, PM Philos. Mag., PSS Phys. Status Solidi, RCM Rev. Chim. Minéral., RJIC Russ. J. Inorg. Chem., SPC Sov. Phys. Crystallogr., SPD Sov. Phys. Dokl., SPSS Sov. Phys. Solid State, ZAAC Z. Allg. Anorg. Chem., ZK Z. Kristallogr., ZM Z. Metallkd., ZN 7. Naturforsch.

It is particularly difficult to diagnose incorrect symmetry caused by overlooked twinning, because the diffraction symmetry points clearly to a different, but false, symmetry. We must distinguish between cases where the twin individuals have more or less equal volumes and those where only a small part of the total intensity is diffracted by a contributing twin. Instances can occur where the true symmetry is:
(1) lower than originally suspected, because the Laue symmetry appears to be higher, due to overlap of nonequivalent, but for each individual twin observable, reflections;
(2) higher than originally suspected, because systematic extinctions (due to centering, glide planes or screw axes) are obscured by overlapping reciprocal lattices, that is by overlap of extinct reflections in one twin individual with observed reflections from another individual.

After a crystal structure is solved and refined such occurrences may be surmized because of the presence of unusual bond lengths, statistical occupancies or uncommonly large R values. Here we only treat instances where the true symmetry is higher than originally assumed, thus Table 1 only contains twinning cases of the second kind mentioned above. Our search for examples of this last category was the least thorough.

For further details concerning the crystal structure determination of crystals with twinning problems see Araki (1991), Bärnighausen (1985), Bärnighausen \& Schiller (1985), Müller et al. (1991) and the literature cited therein.

Discussion

Table 2 addresses itself to the question of which space groups (FS) have the highest probability of
being encountered as the result of an incorrect spacegroup assignment in a particular crystal structure determination. Table 3 presents those space groups (TS) which have the largest potential for being missed as the true description of the symmetry of a particular crystal structure which is instead reported as possessing unnecessarily low (false) symmetry. Such questions can only be discussed if we compare the observed frequencies of the space groups involved with the overall space-group frequencies found for known crystal structures. The percentages listed in Tables 2 and 3 under 'overall' refer to the space-group frequencies of 86303 crystal structure determinations of organic molecules, organometallics, inorganic compounds and alloys (Padmaja, Ramakumar \& Viswamitra, 1990; and see Appendix). Cases of space groups that occur three or fewer times are treated as statistical noise and are not discussed any further, but they are listed in Table 2. All errors of categories 2 (change in Laue class without change in crystal system) and 4 (overlooked centering or too large unit cells) fall into this class. When we compare the frequencies of the overall populations, which are based on individual crystal structure determinations, with the frequencies found for the wrongly assigned crystal structure types, we may be introducing a bias. However, we have no practical way of handling this problem, thus we must assume that the ratio of individual crystal structure determinations to crystal structure types is a constant for all space groups.

Only 14 space-group types (FS) occur in category 1. Each one of these represents a type which it is apparently easy to accept as the correct lattice without recognizing that a more highly symmetric lattice (TS) is called for. Space groups $P 1, C c$ and $C 2 / m$ (FS) are clearly over represented compared with their frequencies among all space groups, while space

Table 2. Frequencies of space-group revisions reported in the literature, subdivided by category of error (see text)

The first entry is the original incorrectly assigned space group (FS), the second the corrected space-group (TS) assignment (all space groups are given in their standard setting), the number tells how often this type of false assignment occurs in our sample of 221 cases. The percentages of the falsely assigned space group in our sample and the frequency of the corresponding space group among all known structures are given last.

Incorrect	Corrected	No.	Sample (\%)	Overall (\%)	Incorrect	Corrected	No.	Sample (\%)	Overall (\%)
Category 1									
$P 1$	Cm	2			Cm	R3m	1		
$P 1$	Cc	3			Cm	P6 72	1	1	0.13
$P 1$	R3m	,	3	0.90	Cc	$F d d 2$	6		
$P \overline{1}$	C2/m	3			Cc	R ${ }^{3} \mathrm{c}$	1	3	0.86
$P \overline{1}$	$P 2 / \mathrm{c}$	1			$P 2_{1} / m$	Cmcm	2	1	0.92
$P \mathrm{~T}$	$P 2 / c$	2			$\mathrm{C} 2 / \mathrm{m}$	$R \overline{3} m$	11	5	1.66
$P \mathrm{I}$	C2/c	17			C2/c	Fddd	1		
PT	Immm	1	11	11.87	C2/c	Ibca	1		
$P 2_{1}$	$P 2,2,21$	2			C2/c	${ }^{P} \mathbf{3} \mathbf{c} 1$	2		
$P 2_{1}$	Cmc2,	3	2	4.06	C2/c	$R \overline{3} c$	8	5	5.69
$C 2$	Fdd2	2			Cmcm	$\mathrm{Pb}_{3} / \mathrm{mcm}$	1	0.5	0.88
C2	R32	,			Cmmm	P4/mbm	1	0.5	0.12
C2	R3c	1	2	0.72	P3	R32	1	0.5	0.06
Pc	Pmma	1	0.5	0.31	P31c	$\mathrm{Pb}_{3} / \mathrm{mmc}$	1	0.5	0.07
Category 2									
$P 4$,	P4,2,2	1			R3	$R 3 \mathrm{~m}$	1		
$P \overline{4}$	$P \overline{4}{ }_{2} \mathrm{~m}$	1			P3	$P 6_{3} / m$	1		
14	142 m	1			P31c	$P 6_{3} m c$	1		
$P 4_{2} / n$	$\mathrm{P4}_{2} / n m \mathrm{c}$	1			P31c	$\mathrm{Pb}_{3} / \mathrm{mmc}$	1		
$14 / m$	$14 / \mathrm{mcm}$	1			P_{6}	$\mathrm{P6}_{3} 22$	1		
$P 3{ }_{1}$	P3, 12	1			$P \overline{6}$	P6m2	2		
$P 3_{2}$	$P 321$	1			$P 6$	P6/mmm	1		
R3	R3m	1			$P 6_{3} / \mathrm{m}$	$P 6_{3} / \mathrm{mmc}$	3		
Category 3									
$P 1$	PT	14	6	0.90	Amm2	Cmcm	2	1	0.06
$P 2$,	$P 2_{1} / m$	4			Ama2	Cmcm	1	0.5	0.06
$P 2_{1}$	$P_{2} / 1 / c$	3	3	4.06	Aba 2	Cmea	1		
$C 2$	C2/m	2			Aba 2	Caca	1	1	0.10
C2	${ }^{\text {c }}$ 2/ 2 c	2	2	0.72	Iba 2	Ibam	1	0.5	0.05
$P C$	P2/c	2			14	I4, $/ a$	1	0.5	0.02
Pc	$P 2 / c$	5	3	0.31	14	$14 / \mathrm{m}$	2	1	0.26
Cm	C2/m	2	1	0.13	$P 4_{2}{ }_{2}{ }^{2}$	$P 4_{2} / \mathrm{mnm}$	1	0.5	0.03
Cc	C2ic	28	13	0.86	1422	$14 / \mathrm{mmm}$	1	0.5	0.02
P222	Pccm	1	0.5	0.02	$P 4_{2} m \mathrm{mc}$	$\mathrm{P}_{2} / \mathrm{nmm}$	1	0.5	0.01
P222,	Pmma	2	1	0.02	14 mm	$14 / \mathrm{mmm}$	1	0.5	0.04
C222,	Cmcm	2	1	0.20	$P \overline{4} 2 c$	$\mathrm{P4}_{2} / \mathrm{mmc}$	1	0.5	0.01
C222	Cmmm	1	0.5	0.03	$P \overline{4} b 2$	P4/nbm	1		
Pcc2	Pccm	1	0.5	0.00	$P{ }^{4}+2$	P4/mbm	1	1	0.02
Pcal	Pbcm	1	0.5	0.57	R3	R ${ }^{3}$	2	1	0.19
Pnc2	Phon	2	1	0.02	P321	P ${ }^{3} \mathrm{ml}$	1	0.5	0.09
Pba2	Pbam	1	0.5	0.05	P3m1	$P \overline{3} \mathrm{ml}$	1	0.5	0.12
Pra2,	Prma	12	5	1.40	P622	P6/mmm	1	0.5	0.01
Pnn2	Pnna	1	0.5	0.05	P6 72	$\mathrm{Pb}_{3} / \mathrm{mmc}$	1	0.5	0.06
CmC2 ${ }_{1}$	Cmcm	3	1	0.38	$F \overline{4} 3 \mathrm{~m}$	$F d \overline{3} m$	1	0.5	0.41
Category 4									
P2/m	P2/m	2			Pnnn	Ccom	1		
P2/m	C2/m	1			Pmna	Cmmm	1		
$P 2 / / m$	$P 2_{1} / m$	1			Pmmn	Cmcm	1		
$P 2 / \mathrm{c}$	C2/c	1			Prma	Cmcm	1		
$P 2 / C$	C2/c	2			$1 \overline{4} 3 \mathrm{~m}$	$\mathrm{Pm}{ }^{5} \mathrm{~m}$	1		

groups $P \overline{1}, P 2_{1}$ and $C 2 / c(\mathrm{FS})$ are under represented. Four of the seven rhombohedral groups occur in our sample of missed true symmetries. Apparently in most of these cases only one third of the rhombohedral symmetry was recognized and the space groups were taken to be monoclinic. 25 cases of the overlooked true symmetries in category 1 occur in rhombohedral space groups, that is 11% of the sample of 221 cases. In the total sample of 86303
crystal structures only 3.23% are rhombohedral (see Appendix). Included among the rhombohedral space groups erroneously described in lower symmetry are the nine new cases found by Cenzual, Gelato, Penzo \& Parthe (1990), who searched systematically among centered monoclinic unit cells of crystal structures of alloys for rhombohedral symmetry. In fact in our survey here we find one case each of $P 1$ and $P 3$ (FS), which really should be described in $R 3 m$

Table 3. Space groups for which the correct symmetry has most often been missed
The first entry gives the correct symmetry (TS), the second entry the original wrongly assigned lower-symmetry space group (FS). The overall percentage now refers to the correct space group. For other explanations see Table 2.

Corrected Category 1	Incorrect	No.	Sample (\%)	Overall (\%)	Corrected	Incorrect	No.	Sample (\%)	Overall (\%)
C2/c	PT	17	8	5.69	$R{ }^{3}{ }^{3}$	$C 2$	1		
Fdd 2	$C 2$	2			$R \overline{3} c$	Cc	1		
$F d d 2$	Cc	6	4	0.35	$R 3{ }^{3}$	C2/c	8	5	0.60
$R \overline{3} m$	$C 2 / m$	11	5	1.02					
Category 3									
$P \overline{1}$	P1	14	6	11.87	C2/c	$C 2$	2		
$P 2, / c$	$P 2$,	3			C2/c	Cc	28	14	5.69
$P 2_{1} / \mathrm{c}$	Pc	5	4	25.16	Pnma	Pra2,	12	5	4.26

and $R 32$ (TS), and two instances of $P \overline{3} c 1$ (TS) mistaken for $C 2 / c$ (FS). The most common occurrence, however, in our sample is to mistake a rhombohedral cell for a centered monoclinic cell. An even more pronounced enrichment can be observed for space group $F d d 2$ (TS), where either one of the glide planes ($C c, \mathrm{FS}$) or the twofold axis ($C 2, \mathrm{FS}$) remain of the full symmetry (see Table 3). Space group C2/c (TS) is often mistaken for $P \overline{1}$, but the absolute frequency of that occurrence must be partly due to the abundance of $C 2 / c$ in the total sample of 86303 crystal structures (only three space groups are more common than $C 2 / c$, see Table 6). But on the whole, C centered space groups are still over represented among the cases of missed lattice symmetry, while primitive and especially the body-centered spacegroup types are heavily under represented. All told it is quite clear that trigonal symmetry is more easily missed than tetragonal, hexagonal or cubic symmetry. Possibly trigonal symmetry in the rhombohedral setting is not easily recogrized because it lacks a right angle between the directions of the cell constants, while in the hexagonal setting there are many systematic extinctions which can lead us astray in a sparsely populated reciprocal lattice. The latter reason may also be responsible for choosing C centered monoclinic cells instead of $F d d 2$ or $F d d d$, because not only the F extinction, but also the glide planes are effective in diluting the population of the reciprocal lattice.

Thirty-five space-group types without an inversion center have been falsely assigned (category 3). The most frequently occurring ones are $C c, P n a 2_{1}, P 1, P c$ and $P 2_{1}$ (FS). In most cases of wrongly chosen space groups lacking the necessary inversion center the choice of origin is free in one, two or three directions. This means that the additional overlooked symmetry elements can only be recognized easily after a shift in origin by some irrational fraction or fractions parallel to one or other lattice vector. Put the other way around: one has to look for the symmetry elements somewhere within the unit cell and not just at the origin. In this regard it is telling that for both $P 2_{1} / c$ and $C 2 / c$ (TS) it is more common
to miss the proper space-group symmetry when its glide plane component has been encountered (two degrees of freedom in the choice of origin), than when rotation axes have been identified first (one degree of freedom only, see Table 3). Most cases of overlooked symmetry occur in space groups $C 2 / c$, $P \overline{1}, P n m a$ and $P 2_{1} / c$ (TS). However, only for $C 2 / c$ is the enrichment within our sample large relative to the abundance of $C 2 / c$ within the total population of 86303 cases.

More than a quarter of all crystalline compounds (21883 of 86303) are found in noncentrosymmetric space groups. However, only those where there is freedom in choosing the origin are likely to contain numerous cases where an inversion center has been overlooked. These are, except for $P 1$, space groups belonging to the nine crystal classes $2, m, m m 2,4$, $4 \mathrm{~mm}, 3,3 \mathrm{~m}, 6$ and 6 mm (with 11269 representatives). Among substances crystallizing in space groups of the other eleven noncentrosymmetric crystallographic point groups cases of overlooked inversion centers are much less likely to occur.

Space group Cc (FS) appears both in absolute numbers, and relative to its overall frequency of occurrence, to be the space group with the highest probability of having been falsely assigned in a crystal structure determination. In order to test this observation we searched the 1991 release of the Inorganic Crystal Structure Database (Bergerhoff, Hundt, Sievers \& Brown, 1983) and the Metals Data File (Calvert, 1981) for entries relating to space group Cc. We encountered 244 hits, of which 18 were error sets or bibliographic entries that were useless for our purposes. Of the remaining 226 entries of crystal structures reported to crystallize in space group Cc no less than 88 (or 40%) were flagged by the computer program MISSYM (Le Page, 1988) as possibly having a higher symmetry. Of these four were double entries in the data set, leaving us with 84 crystal structures (not crystal structure types) in Cc. Of these 13 already had been corrected in the literature, for 11 more it was obvious that a description in a higher symmetry was correct (for a total of 24 out of 84 cases or 29%). In 28 cases (one third) it is very

Table 4. Space groups with the highest probability of being wrongly assigned in a crystal structure determination
The table shows the number of times the given group (FS) shows up as an error in category 1, in category 3 or in total, the percentages of the false space group in our sample and the frequency of this space group among all known crystal structures.

	No. in category 1	No. in category 3	Total	Sample (\%)	Overall (\%)
$C c$	7	28	35	16	0.86
$P c$	1	7	8	4	0.31
$P 1$	6	14	20	9	0.90
$C 2$	4	4	8	4	0.72
$P n a 2_{1}$		12	12	5	1.40
$C 2 i m$	11		11	5	1.66
$C 2 / c$	12	7	12	5	5.69
$P 21$	5	12	5	4.06	
$P \overline{1}$	24		24	11	11.87

likely that the description in space group $C c$ stands. This leaves 32 doubtful cases which we cannot decide without further investigation. But even the 24 confirmed cases mean that about 11% (24 of 226 entries) of inorganic compounds reported in space group $C c$ should have a higher symmetry. If we apply this percentage to the 501 organic crystal structures reported by Padmaja et al. (1990) to crystallize in space group Cc there should be 55 incorrect assignments among them. This number happens to match the 55 entries in $C c$ identified by Padmaja et al. (1990) as having more than one formula unit per asymmetric unit. Such are the perils of space-group Cc.

Concluding remarks

One observation stands out: clearly it is difficult to miss cubic symmetry. Only two examples of overlooked cubic space groups seem to have been reported so far. This is particularly noteworthy, considering that rhombohedral symmetry, which is strongly related to cubic symmetry, has been frequently misidentified. The lack of a right angle in rhombohedral symmetry must be very important in this regard.

All told the eight space groups (TS) listed in Table 3 have a reasonably high probability that some of their symmetry might be overlooked. Of these eight space groups $F d d 2, R \overline{3} c, R \overline{3} m$ and $C 2 / c$ are over represented in our sample of 221 cases by factors ranging from eleven to four relative to their frequency in the sample of 86303 determined crystal structures. Space groups $P \overline{1}, P 2_{1} / c$ and Pnma on the other hand show up in Table 3, mostly because they are very common space groups and thus have been misidentified more often in absolute numbers.
Conversely crystal structures (Table 4) reported to crystallize in space groups $C c, P 1, P c, C 2, P n a 2_{1}$ and $C 2 / m$ (FS) have in that sequence the highest probability of being cases were a higher symmetry has been missed (over represented by factors ranging from 19 to 3). Space groups $C 2 / c, P 2_{1}$ and $P \overline{1}$ (FS) are similarly represented in our sample as in the
general population. The frequency distribution shown in Table 4 is completely different from the distribution shown in Table 6 for the general population. It is biased heavily towards space groups were the fixing of the origin has at least one degree of freedom.
We can attempt an estimate of how many crystal structures described in the space groups listed in Table 4 have actually been reported in unnecessarily low symmetry by extrapolating from our experience with space group $C c$ (FS). Out of 84 questionable assignments of inorganic crystal structures to space group $C c, 24$ almost certainly have a higher true symmetry, while 28 really belong into Cc. If we allocate the remaining 32 questionable cases in the same ratio, we obtain 39 instances were the symmetry should be revised upwards. Thirteen of these 39 cases have already been corrected in the extant literature, that amounts to 33%. We can scale the 142 reported changes of symmetry recorded in Table 4 up to about 430 cases of missed symmetry or to 1.8% of all 23712 compounds crystallizing in these nine space groups. The estimate of incorrectly described structures (3%) given by Baur \& Tillmanns (1986) would then have been too large. One can look at it in a more positive way as well: one third of all falsely assigned space-group symmetries have already been revised. Marsh and co-workers have obviously done a thorough job so far.

Recommendations

A number of ways in which one can guard at several points during the course of a crystal structure determination against choosing too low a symmetry have been recommended by Baur \& Tillmanns (1986). The least that should be done, however, is:
(1) to check the metric of the lattice at the beginning of a structural study (see Himes \& Mighell, 1982), and
(2) check the symmetry of the completed crystal structure after the determination is completed (Le Page, 1988).

Table 5. Space-group frequencies of 3469 crystal structures of inorganic compounds (including alloys) and of 51611 crystal structures of organic and organometallic compounds (Padmaja et al., 1990)

Space-group No.	Space-group symbol	Frequency (inorganic)	Frequency (organic)	Space-group No.	Space-group symbol	Frequency (inorganic)	Frequency (organic)
1	$P 1$	146	635	73	Ibca	15	- 15
2	$P \overline{1}$	1508	8733	74	Imma	140	5
3	P2	19	8	75	$P 4$	18	2
4	$P 2_{1}$	224	3278	76	$P 4$	21	79
5	$C 2$	156	463	77	P_{2}	8	5
6	Pm	13	1	78	$P 4_{3}$	4	24
7	$P \mathrm{P}$	74	196	79	14	19	16
8	Cm	80	30	80	14	5	13
9	Cc	244	501	81	$P \overline{4}$	12	11
10	P2/m	81	7	82	14	149	76
11	$P 2{ }_{1} / m$	462	332	83	P4/m	19	1
12	C $2 / \mathrm{m}$	1180	254	84	$P 4 / 2 / m$	20	8
13	$P 2 / \mathrm{c}$	206	254	85	$P 4 / n$	58	54
14	$P 2 / c$	2827	18885	86	$\mathrm{P4}_{2} / \mathrm{n}$	56	87
15	C2/c	1326	3585	87	$14 / \mathrm{m}$	149	29
16	P222	14	3	88	I4, $/ a$	179	153
17	P222,	17	4	89	$P 422$	1	1
18	P2,2,2	62	271	90	P42, 2	5	3
19	$P 2,2,2$,	380	5679	91	P4,22	6	2
20	C222,	53	117	92	$P 4,2,2$	87	160
21	C222	18	4	93	P4, 22	0	1
22	$F 222$	6	0	94	P4,2,2	13	16
23	1222	8	14	95	$P 4322$	5	2
24	$12,2,2$,	2	1	96	$P 4,2,2$	29	65
25	Pmm2	15	1	97	1422	12	1
26	Pme2,	55	11	98	14,22	5	2
27	Pcc2	0	1	99	$P 4 \mathrm{~mm}$	82	0
28	Pma2	18	1	100	P4 hm	23	0
29	$\mathrm{Pca2}_{1}$	109	387	101	$\mathrm{P4}_{2} \mathrm{~cm}$	0	1
30	Pnc2	6	8	102	$\mathrm{P4}_{2} \mathrm{~nm}$	15	3
31	Pmn2,	146	40	103	$\mathrm{P4CO}$	8	0
32	Pha2	26	16	104	$P 4 n \mathrm{C}$	0	6
33	Pna2,	369	840	105	$P 4_{2} \mathrm{mc}$	4	1
34	Pnn2	25	18	106	$P 4, b c$	2	6
35	Cmm 2	9	1	107	14 mm	31	2
36	$\mathrm{CmC2}$,	237	93	108	14 cm	6	4
37	Ccc 2	3	9	109	$14, m d$	22	5
38	Amm 2	52	1	110	$14_{1}{ }_{1} \mathrm{Cd}$	12	20
39	Ahm2	9	6	111	$P \overline{4} 2 m$	23	2
40	Ama 2	38	12	112	$P \overline{4} 2 c$	8	0
41	Aba 2	40	46	113	$P \overline{4} 2, m$	95	20
42	Fmm 2	13	11	114	$P \overline{4} 2_{1} \mathrm{C}$	41	76
43	$F d d 2$	126	176	115	$P \overline{4} m 2$	9	2
44	Imm 2	49	7	116	$P \overline{4} c 2$	9	2
45	$t h a 2$	3	44	117	$P 4 b 2$	17	4
46	Ima2	26	5	118	$P{ }_{4}{ }_{n}$	21	14
47	Pmmm	212	0	119	$14{ }^{1} 2$	25	3
48	Pnnn	2	3	120	$\boldsymbol{4} \times 1 \times 2$	12	3
49	Pccm	2	1	121	142 m	86	19
50	Pban	10	2	122	$142 d$	229	26
51	Pmma	57	7	123	$P 4$ immm	259	2
52	Prna	49	49	124	P4/mcc	21	8
53	Pmna	27	8	125	P4/nbm	5	0
54	Pcca	23	17	126	P4innc	8	9
55	Pham	265	13	127	P4/mbm	179	4
56	Pccn	50	178	128	P4/mnc	84	3
57	Pbcm	121	78	129	$P 4 / \mathrm{nmm}$	354	10
58	Pnnm	272	49	130	P4incc	49	16
59	Pmmn	119	26	131	$\mathrm{P}_{2} \mathrm{i}$ immc	22	3
60	Pbon	266	519	132	$\mathrm{P4}_{2} / \mathrm{mcm}$	4	0
61	Pbca	466	2189	133	$\mathrm{P4}_{2} / n b c$	5	4
62	Prma	2863	811	134	$\mathrm{P4}_{2} \mathrm{nnm}$	15	1
63	Cmcm	677	86	135	$\mathrm{P4}_{2} / \mathrm{mb}$ c	56	5
64	Comca	218	77	136	$\mathrm{P4}_{2} / \mathrm{mmm}$	278	16
65	Cmmm	103	4	137	$\mathrm{Pa}_{2} / \mathrm{nmc}$	43	10
66	Cccm	46	7	138	$\mathrm{P4}_{2} \mathrm{incm}$	11	3
67	Cmma	23	2	139	14 mmm	1176	11
68	Ccca	16	13	140	14 mcm	343	3
69	Fmmm	50	3	141	$14_{1} /$ arnd	301	8
70	Fddd	111	47	142	$14_{1} /$ acd	56	27
71	Immm	190	3	143	P3	40	11
72	Ibam	99	25	144	$P 3$,	29	44

Table 5 (cont.)

Space-group No.	Space-group symbol	Frequency (inorganic)	Frequency (organic)	Space-group No.	Space-group symbol	Frequency (inorganic)	Frequency (organic)
145	$P 3_{2}$	5	22	188	$P \overline{6} c 2$	29	0
146	$R 3$	89	77	189	$P \overline{6} 2 m$	237	1
147	P ${ }^{3}$	78	51	190	P62c	40	11
148	R ${ }^{3}$	500	235	191	P6/mmm	498	1
149	P312	14	0	192	$\mathrm{P6} / \mathrm{mcc}$	67	2
150	P321	76	5	193	$\mathrm{Pb}_{3} / \mathrm{mcm}$	216	0
151	P3,12	12	1	194	$\mathrm{Pb}_{3} / \mathrm{mmc}$	1254	11
152	P3,21	149	56	195	P23	16	0
153	P3212	1	1	196	F23	49	1
154	P32 21	31	21	197	123	56	3
155	R32	69	19	198	P2, 3	163	31
156	P3m1	104	0	199	[2,3	45	1
157	P31m	31	2	200	Pm3	27	0
158	P3cl	8	7	201	$P n 3$	45	0
159	P31c	46	11	202	Fm^{3}	37	2
160	R3m	223	23	203	Fd 3	34	1
161	R3c	98	62	204	$\operatorname{Im} 3$	100	3
162	$P 31 m$	55	0	205	Pa3	210	49
163		50	21	206	$1 a^{3}$	60	3
164	$P 3 \mathrm{ml}$	586	9	207	$P 432$	2	0
165	$P 3{ }^{3} \mathrm{c} 1$	86	20	208	P4, 32	12	0
166	$R \overline{3} m$	858	18	209	F432	6	2
167	R ${ }^{3} \mathrm{c}$	458	57	210	F4,32	7	1
168	P6	3	0	211	1432	5	0
169	$P 6{ }_{1}$	16	35	212	P4,32	34	2
170	P6,	9	27	213	P4, 32	17	3
171	$P^{6}{ }_{2}$	1	4	214	14, 32	10	0
172	Pb_{4}	0	2	215	$P{ }^{4} 3 \mathrm{~m}$	89	3
173	$\mathrm{P6}_{3}$	189	34	216	F43m	352	1
174	$P \overline{6}$	100	1	217	143 m	144	15
175	P6/m	14	0	218	$P \overline{4} 3 n$	88	8
176	$P 6_{3} / \mathrm{m}$	419	89	219	F43c.	24	7
177	P622	11	0	220	$143 d$	277	6
178	P6,22	4	9	221	Pm3m	506	9
179	P6, 22	0	4	222	Pr3 ${ }^{\text {n }}$	3	0
180	$\mathrm{Pb}_{2} 22$	61	3	223	Pm3n	53	1
181	$\mathrm{P6}_{4} 22$	11	0	224	Pr ${ }^{3} m$	25	3
182	$\mathrm{Pb}_{3} 22$	36	2	225	Fm 3 m	1532	10
183	P6mm	0	1	226	Fm 3 c .	28	0
184	P6cc	1	0	227	$F d^{3} \mathrm{~m}$	1050	5
185	$\mathrm{Pb}_{3} \mathrm{~cm}$	48	1	228	Fd ${ }^{3} \mathrm{c}$	19	5
186	$\mathrm{Pb}_{3} \mathrm{mc}$	308	15	229	Im 3 m	91	10
187	$P \overline{6} m 2$	56	0	230	$I a^{3} d$	251	1

APPENDIX

In order to judge the significance of the observed frequencies of incorrectly assigned (FS) and corrected space groups (TS) in our sample of 221 cases we had to compare them with the frequencies of occurrence of these space groups in a larger population. For crystal structures of organic and organometallic compounds such statistics have recently been provided by Padmaja et al. (1990) using the Cambridge Structural Database (Allen et al., 1979). However, the 221 cases of corrected symmetry include inorganic and alloy structures as well. It has already been shown by Mackay (1967) on the basis of 3782 crystal species that the distribution of organic and inorganic compounds among the space groups differs: they belong to distinct populations. Mighell \& Rodgers (1980) reported the relative frequencies of occurrence of the most common 32 space groups for 11641 inorganic compounds. However, several of
the space groups in which we were interested, are not among these 32 front runners. Therefore we checked the space-group frequencies of 34692 inorganic compounds compiled in the 1991 release of the Inorganic Crystal Structure Database (ICSD, Bergerhoff et al., 1983) and in the Metals Data File (MDF, Calvert, 1981). The results of that survey are given in Tables 5,6 and 7 together with the statistics compiled by Padmaja et al. (1990). The numbers given here are not for structure types, but for individual crystal structure determinations. It would be an extremely lengthy task to sort 34692 entries for structure types. There are also numerous possibilities for errors creeping into compilations such as ICSD or MDF, whereby many of these errors are already present in the original literature. Actually, both surveys quoted (Mighell \& Rodgers, 1980; Padmaja et al., 1990) were performed in order to show ways in which such errors may be diagnosed. The space-group symmetries of the packing of organic molecules have been

Table 6. The 32 most frequent space groups ranked according to their occurrence in the total sample
Data given: space-group number, space-group symbol, rank, number and percentage for the inorganic data, the organic data and for their sum. All space groups with a joint frequency down to 0.39 are listed, as well as all inorganic frequencies down to 0.99% (rank 24), and all organics down to 0.46% (rank 18).

Space-group No.	Space-group symbol	Inorganic			Organic			Sum of inorganic and organic		
		Rank	No.	\%	Rank	No.	\%	Rank	No.	\%
14	$P 2{ }_{1} / \mathrm{c}$	2	2827	8.15	1	18885	36.59	1	21712	25.16
2	$P 1$	4	1508	4.35	2	8733	16.92	2	10241	11.87
19	$P 2,2,2$,	20	380	1.10	3	5679	11.00	3	6059	7.02
15	C2/c	5	1326	3.82	4	3585	6.95	4	4911	5.69
62	Prma	1	2863	8.25	8	811	1.57	5	3674	4.26
4	$P 2_{1}$	38	224	0.65	5	3278	6.35	6	3502	4.06
61	Pbca	16	466	1.34	6	2189	4.24	7	2655	3.08
225	Fm 3 m	3	1532	4.42	96	10	0.02	8	1542	1.79
12	C2/m	7	1180	3.40	16	254	0.49	9	1434	1.66
194	$P 6_{3} / \mathrm{mmc}$	6	1254	3.61	93	11	0.02	10	1265	1.47
33	Pna2,	21	369	1.06	7	840	1.63	11	1209	1.40
139	$14 / \mathrm{mmm}$	8	1176	3.39	89	11	0.02	12	1187	1.38
227	$F \overline{3} \overline{3} m$	9	1050	3.03	126	5	0.01	13	1055	1.22
166	$R \overline{3} m$	10	858	2.47	70	18	0.03	14	876	1.02
11	$P 2_{1} / m$	17	462	1.33	14	332	0.64	15	794	0.92
60	Pbon	30	266	0.77	10	519	1.01	16	785	0.91
1	$P 1$	54	146	0.42	9	635	1.23	17	781	0.90
63	Cmcm	11	677	1.95	28	86	0.17	18	763	0.88
9	Cc	34	244	0.70	11	501	0.97	19	745	0.86
148	$R \overline{3}$	14	500	1.44	18	235	0.46	20	735	0.85
5	C2	50	156	0.45	12	463	0.90	21	619	0.72
164	$P \overline{3} m 1$	12	586	1.69	100	9	0.02	22	595	0.69
167	$R \overline{3} \mathrm{C}$	18	458	1.32	37	57	0.11	23	515	0.60
221	$P m \overline{3} m$	13	506	1.46	102	9	0.02	24	515	0.60
176	$P 6_{3} / m$	19	419	1.21	26	89	0.17	25	508	0.59
191	P6/mmm	15	498	1.44	195	1	0.00	26	499	0.58
29	Pca2,	62	109	0.31	13	387	0.75	27	496	0.57
13	P2/c	44	206	0.59	17	254	0.49	28	460	0.53
129	P4/nmm	22	354	1.02	94	10	0.02	29	364	0.42
216	$F 43 m$	23	352	1.01	200	1	0.00	30	353	0.41
140	$14 / \mathrm{mcm}$	24	343	0.99	148	3	0.01	31	346	0.40
18	$P 2,2,2$	86	62	0.18	15	271	0.53	32	333	0.39

discussed by Kitaigorodskii (1961). A statistical analysis of the frequency distribution of space groups of organic substances has recently been given by Wilson (1988, 1990). Analogous studies for inorganic compounds are unknown to us.

We thought that our compilation, especially in juxtaposition with the statistics on the organic compounds might be of general interest, and therefore we are presenting the results as an appendix to our paper. We wish to make several points.
(1) Between the organic and the inorganic compounds all space groups are occupied, even though there are seven space-group types without inorganic examples and 28 without organic examples. If one so wishes one could take this as experimental proof of space-group theory. However, one has to bear in mind that not all space-group assignments are necessarily correct. Before anybody announces that there are certainly examples available for all space groups one should check the experimental validity of the assignments to space groups with very few representatives. All one can say now is that within the experimental accuracy of the individual crystal structure determinations all space groups have at least one example. There are five space groups with one
example each. How many examples would we need to be completely convinced?
(2) The distribution is much more skewed for the organic compounds than for the inorganic compounds (Fig. 1). This point was made by Mighell \& Rodgers (1980) and is reinforced by the results from our larger database. The 18 most populous space groups of inorganic compounds comprise 56.86% of that sample, the corresponding 18 groups of the organic crystal structures contain 92.71% of that population. At the other end of the frequency distribution there are many more unoccupied space group types among the organics than among the inorganics, see above.
(3) Among the 18 most common groups of inorganic materials all crystal systems are represented. The corresponding 18 groups of organic substances belong with one exception to the triclinic, monoclinic and orthorhombic systems. The exception is $R \overline{3}$ which is ranked 18 (235 cases, 0.46%)! In all, groups of triclinic, monoclinic and orthorhombic symmetry amount to 95.38% of the organic sample, but only 48.92% of the inorganic sample (Fig. 2).
(4) Of the 18 most common space groups of the inorganic structures none lacks an inversion center,

Table 7. Frequency distribution of the space groups over the 32 crystal classes and over the crystal systems
Data given: crystal class, rank, frequency and percentage for the inorganic data, the organic data and for their sum.

Crystal class	Inorganic			Organic			Sum of inorganic and organic		
symbol	Rank	No.	\%	Rank	No.	\%	Rank	No.	\%
1	28	146	0.42	8	635	1.23	15	781	0.90
$\overline{1}$	7	1508	4.35	2	8733	16.92	3	10241	11.87
Σ Triclinic	7	1654	4.77	3	9368	18.15	3	11022	12.77
2	18	399	1.15	5	3749	7.26	5	4148	4.81
m	17	411	1.18	7	728	1.41	11	1139	1.32
$2 / \mathrm{m}$	2	6082	17.53	1	23317	45.18	1	29399	34.06
こ Monoclinic	2	6892	19.87	1	27794	53.85	1	34686	40.19
222	12	560	1.61	3	6093	11.81	4	6653	7.71
mm2	8	1374	3.96	6	1734	3.36	8	3108	3.60
mmm	1	6492	18.71	4	4237	8.21	2	10729	12.43
\sum Orthorhombic	1	8426	24.29	2	12064	23.37	2	20490	23.74
4	32	75	0.22	15	139	0.27	29	214	0.25
$\overline{4}$	27	161	0.46	21	87	0.17	28	248	0.29
$4 / m$	15	481	1.39	9	332	0.64	14	813	0.94
422	25	163	0.47	11	253	0.49	21	416	0.48
4 mm	24	205	0.59	23	48	0.09	27	253	0.29
$\overline{4} 2 m$	11	575	1.66	12	171	0.33	16	746	0.86
$4 / \mathrm{mmm}$	4	3269	9.42	14	143	0.28	7	3412	3.95
Σ Tetragonal	4	4929	14.21	4	1173	2.27	4	6102	7.07
3	26	163	0.47	13	154	0.30	26	317	0.37
$\frac{3}{3}$	10	578	1.67	10	286	0.55	13	864	1.00
32	21	352	1.01	18	103	0.20	20	455	0.53
3 m	14	510	1.47	17	105	0.20	17	615	0.71
$\overline{3} \mathrm{~m}$	5	2093	6.03	16	125	0.24	9	2218	2.57
Σ Trigonal	5	3696	10.65	5	773	1.50	6	4469	5.18
6	23	218	0.63	19	102	0.20	25	320	0.37
$\overline{6}$	30	100	0.29	32	1	0.00	31	101	0.12
6/m	16	433	1.25	20	89	0.17	19	522	0.60
622	29	123	0.35	27	18	0.03	30	141	0.16
6 mm	20	357	1.03	28	17	0.03	23	374	0.43
$\overline{6} m 2$	19	362	1.04	30	12	0.02	22	374	0.43
$6 / \mathrm{mmm}$	6	2035	5.87	29	14	0.03	10	2049	2.37
\sum Hexagonal	6	3628	10.46	6	253	0.49	7	3881	4.50
23	22	329	0.95	26	36	0.07	24	365	0.42
$m \overline{3}$	13	513	1.48	22	58	0.11	18	571	0.66
432	31	93	0.27	31	8	0.02	32	101	0.12
$\overline{4} 3 \mathrm{~m}$	9	947	2.81	25	40	0.08	12	1014	1.17
$m \overline{3} m$	3	3558	10.26	24	44	0.09	6	3602	4.17
Σ Cubic	3	5467	15.76	7	186	0.36	5	5653	6.55

therefore none of them would admit enantiomorphism, and 12 of them contain a mirror plane. Of the 18 most common space groups of the organic structures eight lack an inversion center, five could be enantiomorphic, and only three have mirror planes.
(5) Almost four fifths (77.95%) of the inorganic crystal structures crystallize in centrosymmetric space groups. This is not that much higher than the 72.42% centrosymmetric organic crystal structures and in this regard the difference between the two populations is not pronounced.
(6) The most striking difference between the inorganic and organic populations [next to the distribution among the crystal systems, see point (3)] is the concentration of inorganic structures in the space groups of highest symmetry in the trigonal, tetragonal, hexagonal and cubic systems (Fig. 2). In groups belonging to the crystal classes $3 \mathrm{~m}, 4 / \mathrm{mmm}$,
$6 / \mathrm{mmm}$ and $m \overline{3} m 10955$ of 17720 compounds crystallize in the tetragonal, trigonal, hexagonal and cubic systems. This amounts to 31.58% of the total inorganic sample, while for the organic population the corresponding numbers are 326 of 2059 compounds (or 0.63% of the total organic sample). This observation would seem to support the contention that in solid-state inorganic chemistry a symmetry principle is at work (Bärnighausen, 1980; Brunner, 1971).
(7) While generally the distributions observed by Mighell \& Rodgers (1980) and by us for the inorganic compounds are similar, in detail there are distinct differences: the sequence and the percentages of individual space groups are not identical. Mighell \& Rodgers found $F m \overline{3} m$ to be the most common space group for inorganic compounds (about 8.4%, or close to 1000 occurrences), we find it to rank third

Fig. 1. The 24 most common space groups among organic and inorganic crystal structures shown as percentages of all organic or inorganic crystal structures.

Fig. 2. Distribution of space groups of organic and inorganic crystal structures by crystal class and by crystal system.
behind Pnma and $P 2_{1} / c$, with 4.42% and 1532 cases. This may be an artifact of the history of crystal structure determination. The older compilation was most likely more heavily weighted towards simpler more easily determined highly symmetric crystal structures. As time goes by their relative contribution should diminish ever further.

We thank Professor Dr Ulrich Müller, Marburg, for the communication of unpublished results, and also thank him and an anonymous referee for critical evaluation of our manuscript.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339
Arakı, T. (1991). Z. Kristallogr. 194. 161-191.
Bärnighausen. H. (1980). Math. Commun. Math. Chem. 9. 139-175.
Bärnighausen, H. (1985). Z. Kristallogr. 170, 5-6.

Bärnighausfen, H. \& Schiller, G. (1985). J. Less-Common. Met. 110, 385-390.
Baur, W. H. \& Tillmanns, E. (1986). Acta Cryst. B46, 95-111.
Bergerhoff, G., Hundt, R., Sievers, R. \& Brown, I. D. (1983). J. Chem. Inf. Comput. Sci. 23, 66-69.

Brunner, G. O. (1971). Acta Cryst. A27, 388-390.
Calvert, L. D. (1981). Acta Cryst. A37, C343--C344.
Cenzual, K., Gelato, L. M., Penzo, M. \& Parthé, E. (1990). Z. Kristallogr. 193, 217-242.
Himes, V. L. \& Mighell, A. D. (1982). Acta Cry'st. A38, 748-749.
Jones, P. G. (1984). Chem. Soc. Rev. 13, 157172.
KitaigorodskiI, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.
Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.
Mackay, A. (1967). Acta Cryst. 22, 329-330.
Marsh, R. E. (1986a). Acta Cryst. B42, 193-198.
Marsh, R. E. (1986b). Acta Cryst. C42, 1327-1328.
Mighell, A. D. \& Rodgers, J. R. (1980). Acta Cryst. A36, 321-326.
Müller, U., Bernet, K. \& Hoppe, R. (1991). Z. Anorg. Allg. Chem. In the press.
Padmaja, N., Ramakumar, S. \& Viswamitra, M. A. (1990). Acta Cryst. A46, 725-730.
Schomaker, V. \& Marsh, R. E. (1979). Acta Cryst. B35, 19331934.

Wilson, A. J. C. (1988). Acta Cryst. A44, 715-724.
Wilson, A. J. C. (1990). Acta Cryst. A46, 742-754.

